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Gaussian Assumption

Two-Sample location tests (TSLTs) 

often have distributional 

assumptions or rely on 

asymptotic properties. If data 

does not match these 

assumptions, than the test is 

inappropriate.

No Distribution Assumed

ERF makes no assumptions of a feature's 

distribution. This is sometimes 

preferable with real-world data where 

distributions are skewed or multi-modal.

ERF is a computationally intensive approach that constructs an ensemble of classification or regression trees from 

bootstrap samples of the data. The candidate features available at every node of the tree are a random subset of the total 

available features. This random sub-setting allows for trees to be fit in a lower dimension without introducing additional 

bias, while the averaging of these trees removes variance from the prediction. The “out-of-bag” (OOB) samples—i.e., 

observations left out of the bootstrap samples—are used to estimate prediction error of trees. The variable importance 

measure (VIM) for feature Xj, is the difference in prediction error caused by randomly permuting the Xj OOB sample 

values. Therefore, the VIM represents the benefit of having a feature included in a tree compared to random noise. VIMs 

can be ranked to identify the highly relevant features but are insufficient to declare a feature irrelevant to the disease 

state classification. ERF addresses this shortcoming by extending the original feature set with a permuted set of features, 

called shadow features. For each original feature, a shadow feature is created by randomly permuting the values from all 

observations. By creating these randomly permuted features X'j, we break their original associations with the response. 

When the permuted features are used to predict the response, the prediction accuracy decreases substantially as 

compared to the original feature if the original feature was informative of the response. Thus a reasonable measure for 

feature relevance is the likelihood that a feature has a higher mean VIM than that of the highest ranking shadow feature. 

This is estimated by the p-value taken from a one-sided Mann-Whitney U test between each feature and the shadow 

feature with the highest mean VIM.

None of the top 10 transcripts identi-
fied by the traditional method were in 
the ERF–generated list of top tran-
scripts.

The ERF methodology focused on the 
predictive contribution of a transcript 
and is agnostic to fold-change.  

The most relevant ERF-identified 
transcripts  confirmed TGFβ signaling 
in MMVD.

ERF identified 3 novel pathways that 
were intuitively relevant to MMVD.

ERF generates many thousands of de-correlated decision trees that together can 

discover conditional relevance among sets of transcripts or other features in the 

data for a given classification or regression task.

Multiple Partitions

Even when there is only a single feature 

being considered, the recursive 

partitioning scheme of ERF can capture 

differences in distributions that are 

best represented as a mixture of 

distributions. This is sometimes the 

case in gene expression data sets 

where very high or very low expression 

is indicative of something different 

than a moderate level of expression.  

Binary Class Limitation

TSLTs are limited to binary 

classification problems. Case 

control studies fit this paradigm. 

TSLTs are limited by the 

assumption that the difference in 

means between two classes is 

sufficient to separate classes. This 

presents itself as a single 

discriminative partition between 

distributions. 

P RO P E RT I E S :  Traditional Method P RO P E RT I E S :  ERF Method

A B O U T  C O N D I T I O N A L  R E L E VA N C E

This synthetic example shows how features 
can have conditional relevance. The pattern 
depicted is a simple 'AND' operator for 
features X and Y. Although X and Y are 
clearly relevant features for prediction when 
combined, they aren't useful on there own. 
ERF is capable of detecting high order 
feature interactions where univariate 
approaches will not find X or Y. 

Arbitrary P-Value Threshold

Traditional univariate feature 

selection procedures involve a 

repeated two sample test of 

location (TSLTs) for all candidate 

features and then followed by a 

multiple hypothesis testing 

correction. The subset of top 

features is selected by setting a 

hard threshold for inclusion in the 

set. Such thresholds are typically 

p-values associated with a 

hypothesis test.

Many Different Classes

The ERF framework supports multi-class 

classification and regression. For 

instance, multi-class is useful when there 

are multiple drug treatments in a trial or 

different disease subtypes in a study.
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abstract

F I N D I N G S

O F  I N T E R E S T

WHY is ERF better ?

Recent advances in biological data acquisition and 
sequencing technologies enable identification of 
thousands, sometimes millions, of features per sample 
[1]. A common desire is to combine datasets with 
unique characteristics to identify features that are 
relevant to understanding a phenotype of interest [2] 
[3]. Classical univariate testing methods are often 
unsuitable for such data, since they are limited by 
their assumptions of the underlying model and the 
data’s distribution [4] [5]. 

We present the Extended Random Forest (ERF) 
method as one method for computing multivariate 
and conditional relevance in high dimensional, 
heterogeneous data when there is an order of 
magnitude more features than samples [6]. Here, we 
use myxomatous mitral valve disease (MMVD) as a 
framework to illustrate the ways in which ERF 
analyses can lend insights into high dimensional 
mRNA and miRNA data through infographics that 
compare statistical and computational properties.    

Initially, differential gene expression in MMVD was 
identified using traditional univariate hypothesis 
testing, and features were ranked based on 
fold-change value and subsequent Ingenuity Pathway 
Analysis (IPA) of ~2,500 genes (based on cutoff 
criteria of fold-change > 1.5 and p < 0.05). While the 
ERF method identified some of the same top ranking 
features, numerous additional genes were more 
predictive of the presence of MMVD, and 
interestingly, none of the top ten differentially 
regulated genes were represented in the ten most 
predictive genes from the ERF analyses.  Using a 
relevance cutoff of 95%, IPA categorization of ~450 
of the most relevant ERF-identified genes confirmed 
the previously reported activation of TGFβ signaling 
in MMVD, and also identified 3 novel pathways that 
are intuitively relevant to MMVD.  Similarly, ERF 
analysis of miRNA yielded novel insights due to the 
relative discordance between fold-change and 
“predictive ability” of the presence of MMVD. 
Collectively, our data suggest the ERF method may 
help to provide novel insights into multidimensional 
data that may lead to novel treatments and 
biomarkers in MMVD.

Technological advances in biological data acquisition and sequencing have enabled the identification 
of thousands, sometimes millions, of features per sample. Often, genotype and phenotype data are 
combined to identify features that are relevant to understanding a phenotype of interest.

The predominant method for analyzing these data sets today typically uses  univariate, or one to one  
comparison to identify important features in the data. However, this method is not ideal for this type 
of data since it is limited by assumptions of the underlying model and the data’s distribution.

What We Did:  Extended Random Forest (ERF)
Using high dimensional mRNA and miRNA data from Dr. Jordan Miller’s research of Myxomatous 
Mitral Valve Disease, we tested the efficacy of the Extended Random Forest (ERF) method for 
computing multivariate and conditional relevance. We conclude that ERF offers different informa-
tion than traditional approaches and complements traditional approaches to feature selection. 
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