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Technological advances in biological data acquisition and sequencing have enabled the identification ERF is a computationally intensive approach that constructs an ensemble of classification or regression trees from ReeenTatanc e D e ol darameatisition and
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of data since it is limited by assumptions of the underlying model and the data’s distribution. / measure (VIM) for feature Xj, is the difference in prediction error caused by randomly permuting the Xj OOB sample unsuitable for such data, since they are limited by
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We present the Extended Random Forest (ERF)

state classification. ERF addresses this shortcoming by extending the original feature set with a permuted set of features, method as one method for computing multivariate

Using high dimensional mMRNA and miRNA data from Dr. Jordan Miller’s research of Myxomatous
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Mitral Valve Disease, we tested the efficacy of the Extended Random Forest (ERF) method for called sh:j\dowfeature? For each original feature,ashadowfeature is created k.Jy ra.nfiomly per’mL.Jtlngthe values from all heterogeln:eousdatavwhenlthelreislanordlerof
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data for a given classification or regression task. fea.thre re.Ievance is the likelihood that a feature ha.s a higher mearhm VIM than that of the highest ranking shadow feature. mRNA and miRNA data through infographics that
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