KNOWENG

BIG DATA TO KNOWLEDGE CENTER OF EXCELLENCE

Analysis of Genomic Data

Researcher has experimental genomic profiles of multiple samples stored in a **spreadsheet**. Examples:

- genes x tumor samples somatic mutation matrix
- genes x cell lines basal transcription from RNA-seq

Input Data

The user wants to apply machine learning and graph mining analysis to their spreadsheet in order to gain understanding of their experimental results.

Gene Prioritization

Goal: Identify genes whose mRNA expression levels explain the variation of drug sensitivity in different cell lines/individuals

Knowledge Network Hypothesis: Interesting genes for follow up analysis may show correlations of their neighbors' expression values with the drug sensitivity measurements

Approach: Robust network ranking of network smoothed expression profiles. Based on:

Knowledge-Guided Prioritization of Genes Determinant of Drug Resistance. Emad A, Cairns J, Kalari K, Wang L, Sinha S.

KnowEnG Cloud-based Scalable Analytics Suite

C. Blatti¹, M. Berry², L. Gatzke², A. Emad¹, N. Sobh¹, C. Bushell^{1,2}, S. Sinha^{1,3} ¹KnowEnG Center, ²Applied Research Institute, ³Department of Computer Science, University of Illinois, Urbana-Champaign, IL

Analysis Workflows in KnowEnG

Gene Set Characterization

Goal: Find associations between the researchers novel gene sets and previously known biological annotations in order to provide understanding and hypothesis

Knowledge Network Hypothesis: Extends associations to poorly/incompletely annotated domains by integrating multiple relationship types

Approach: Network ranking of public gene sets for specificity to the query. Based on:

Characterizing gene sets using discriminative random walks with restart on heterogeneous biological networks. <u>Blatti C¹, Sinha S².</u>

Bioinformatics

Goal: Identify cancer subtypes from somatic mutation genomic data that are predictive of clinical outcomes

Knowledge Network Hypothesis: Within a subtype, two tumors may not share the same somatic mutation, but may have somatic mutations affecting the same pathways and protein interaction networks

Approach: Robust clustering of network smoothed profiles. Based on:

Network-based stratification of tumor mutations free¹, John P Shen², Hannah Carter², Andrew Gross³ & Trey Ideker¹⁻³ nature

Annotations - Annotations Characteristics t Achilles 🥔 Enrich Outcomes

ALLEN BRAIN ATLAS

On Scalable Cloud Infrastructure

KnowEnG uses distributed systems, algorithms, and workflows that can scale to handle large-scale bioinformatics analysis on the increasing size and diversity of user data and community knowledge.

We deploy our analysis pipelines: As a series of **Docker containers** for each analysis task Whose execution is orchestrated by the **Chronos** job scheduling

- framework
- On a compute cluster managed by **Apache Mesos**
- That syncs user and community data through AWS S3

Subtype Stratification

New Workflows

- *Text Mining* Find genes most specifically related to different disease terminology
- **Phenotype Prediction** Create model that predicts phenotypic outcomes from genomic data
- **Gene Regulatory Networks** Model interactions between transcripts and transcription factors

Integration with Other Clouds

- Import user spreadsheets directly from other cloudbased datasets like TCGA, LINCS Package analysis workflows for other cloud computation engines like Seven Bridges Cancer
- **Genomics** Cloud

Interface Improvements

- Automatic mapping of gene/protein identifiers Interactive network-based visualizations to view user and public data
- Save and export analysis results (including support for Bagit data format and publication in BDDS Data Repository)

Acknowledgement:

"This research was supported by grant 1U54GM114838 awarded by NIGMS through funds provided by the trans-NIH Big Data to Knowledge (BD2K) initiative (www.bd2k.nih.gov)."

Upcoming Features

